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LIQUID DISTRIBUTION IN WETTED SLIT REACTORS* 
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Cri ter ion equa t ions were derived to describe the dis t r ibut ion of a liquid in wet ted slit reactors 
for the cases of a dry wall, a totally reflecting wall, and a wall with a real behaviour . Rela t ions 
for a semiinfinite p lane system are also given. 

In the preceding communication of this series, we investigated experimentally the 
amalgam distribution in a vertical cylindrical decomposer1. With respect to the fact 
that the width of modern amalgam electrolysers of high performance is comparable 
with their length2, it is preferable to use a slit reactor3 for the amalgam decomposi-
tion. The present paper deals with the mathematical theory of the amalgam distribu-
tion in slit reactors or, more generally, distribution of a liquid in wetted slit reactors. 

Two-Dimensional System 

The two-dimensional (or slit) system consists of a bed of height h (Fig. l) between 
two vertical walls parallel to the yz plane in a distance a apart from this plane. The 
bed and the walls are considered infinite in the direction of the y axis. If the bed 
is wetted by an infinitely long source with a constant distribution of the liquid along 
the v axis, the liquid distribution depends only on the x and z coordinates, i.e., 
the system can be considered as two-dimensional in the coordinates x and z. 

The mathematical relations derived on the basis of planar geometry can be used 
also for the real slit system of finite length L, since they describe the real situation 
approximately in the case of an arbitrary behaviour of the walls (e.g., Si and s2 

in Fig. l) if the ratio Lja is sufficiently large, and exactly in the case of a behaviour 
of the walls as "total reflectors" regardless of the value of Lja. 

The assumptions underlying the theory are: 1) The bed dimensions are sufficiently 
large with respect to the bed particles; 2) from the statistical point of view, the bed 
elements with different distribution properties are equally distributed in the bed; 
3) the influence of the wall on the liquid distribution, the so-called wall effect, is 
in every point of the wall the same. 

Par t X in the series F low Electrolysers; Par t IX: This Jou rna l 40, 483 (1975). 
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Liquid Distribution in Wetted Slit Reactors 2141 

In view of the statistical character of the liquid distribution in the bed proved 
by several authors 4 - 6 , it can be expected that this process is described by a partial 
differential equation7 analogous to that for diffusion or heat conduction. This was 
proved by Cihla and Schmidt8 who derived on the basis of certain assumptions 
an equation of the mentioned type for the distribution function of a cylindrical 
system. We can derive such an equation in an analogous way in the system of rectan-
gular coordinates: 

D / d 2 / Q c , y, z) d2/(x, y, z ) \ _ df(x, y, z) . . 

V dx2 dy2 J dz U 

The coefficient of the horizontal spreading of the liquid through the bed, D, characte-
rizes only the influence of the properties of the bed on the liquid distribution; it is 
hence independent of the geometry of the system and of the wall behaviour (see 
further text). It is analogous to the diffusion or heat conduction coefficient. 

In the case of a two-dimensional system, Eq. (l) takes the form 

d2f(x, z) = df(x, z) (2 

dx2 dz 1 ) 

The first boundary condition follows from the behaviour of the wall. A system with 
a dry wall is defined by the boundary condition 

f(a, z) = 0 . (3) 

This means that the bed height, h, is chosen so that the liquid attains during the 
distribution process the wall in a horizontal plane of the coordinate z — h. Relations 

FIG. 1 
Orientation of the Coordinate Axes for the 
Slit System 

P(x, y, z) origin of the x, y, z coordinates, 
la slit width, h slit height, L slit length. 
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2142 Kuzela, Rousar, Cezner: 

obtained by solving Eq. (2) with the boundary condition (3) are recommended by cer-
tain authors for the determination of the distribution properties of the bed (i.e., 
the coefficient of the horizontal spreading of the liquid through the bed, D). 

A totally reflecting wall is characterized by the boundary condition 

df(x^z) 
dx 

= 0 . (4) 

In comparison with the foregoing case of a dry wall, where the influence of the 
boundary condition with respect to the limited height of the bed is not manifested 
at all, the bed height h can be in the case of a totally reflecting wall arbitrary. This 
wall limits only the bed and does not participate in the vertical transport of the liquid; 
the wall flow does not take place. In the case of an even wetting of the bed limited 
by a totally reflecting wall, the wetting density given by its value for z = 0 is con-
stant both in the vertical and horizontal directions, hence an optimum utilization 
of the bed surface is achieved. This theoretical model, which can be denoted as an 
"optimally wetted reactor", has an optimum efficiency from the point of view of the 
liquid distribution and corresponds to a plug flow reactor. A real wall can be ap-
proximated by a totally reflecting wall if the wall flow can be neglected (with respect 
to the reaction as well as to the liquid distribution). This system can be made use 
of in the measurement of the spreading coefficient D. 

Unlike the preceding cases, a wall with a real behaviour participates in the vertical 
transport of liquid. On the basis of the contemporary knowledge about the liquid 

T A B L E I 

Roots qn of the Equation (C/<?n — qjB) sin qn + cos qn = 0 

n C= 1 C= 1 C= 1 C — 2 C = 2 C=2 C = 4 C= 4 C = 4 

B= 1 J ? = 3 B=5 B = 1 B= 3 B= 5 B= 1 B = 3 B= 5 

1 1-20779 1-63636 1-77583 
2 3-44824 3-90476 4-17525 
3 6-44095 6-72867 6-95869 
4 9-53048 9-73295 9-91324 
5 12-64578 12-80072 12-94526 
6 15-77154 15-89668 16-01620 
7 18-90256 19-00739 19-10887 
8 22-03659 22-12673 22-21473 
9 25-17251 25-25155 25-32913 

10 28-30969 28-38004 28-44937 

1-46717 1-93867 2-07352 
3-47485 4-01390 4-32869 
6-44478 6-75581 7-01317 
9-53164 9-74236 9-93526 

12-64628 12-80492 12-95579 
15-77179 15-89889 16-02194 
18-90271 19-00869 19-11231 
22-03668 22-12756 22-21694 
25-17257 25-25210 25-33063 
28-30973 28-38043 28-45043 

1-85784 2-32701 2-43013 
3-53573 4-26278 4-64474 
6-45297 6-81848 7-13936 
9-53406 9-76283 9-98443 

12-64729 12-81378 12-97849 
15-77231 15-90347 16-03404 
18-90301 19-01135 19-11946 
22-03687 22-12924 22-22149 
25-17270 25-25323 25-33371 
28-30982 28-38123 28-45260 
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Liquid Distribution in Wetted Slit Reactors 2143 

distribution in a cylindrical system it seems probable that the wall effect is best 
taken into account by the boundary condition according to Stanek and Kola?9 

resembling the theory of the convective heat transfer, or the boundary condition 
after Dutkai and Ruckenstein10 based on an analogy with adsorption and desorption. 
These boundary conditions lead to equivalent solutions differing only by constants 
as a result of different qualitative concepts. 

For a slit system, the boundary condition can be written in the analogous form 

_ d ( = ftffr z ) _ , (5) 

which after multiplying by 2 dz represents the balance of the liquid transfer onto the 
wall in a system element of unit length (parallel to the y axis) and height dz in a dis-
tance z from the origin. The left-hand side of Eq. (5) gives the amount of liquid 
transported in a time unit from the bed to the wall, and the other side gives the 
same quantity based on the liquid transfer to the wall. Analogously to the theory 
of the convective heat transfer, the constant /? is the coefficient of transfer of the 
liquid to the wall, and the term in brackets gives the driving force. The constant y 
can be defined for z -> co as 

= / ( a , °o) = /(*> oo) 

W(ao) W(OD) 

The wall flow W(z) for a system of unit length is given by 

W(z) = W(0) - 2D J " dz . (7) 

The wetting density profile for 2 — 0 is characterized by a boundary condition. For the case 
of a dry wall and a totally reflecting wall we shall solve Eq. (2) with the following boundary 
conditions: generally wetted bed: 

f ( x 0) = ^ g(x) Xl < \ x \ < x2 (8) 
-0 \x\<Xl; x2<\x\^a, 

where gix) is any function fulfilling the Dirichlet conditions (see below); 
two symmetrical band sources: 

f ( x 0 ) = s f o < 1*1 < (,9) 
0 ^ \x\ < ; x2<\x\^ a, 

two symmetrical linear sources: 

f { x o)= / x 1*1 = UO) 
* 0 0 ^ |.x| < Xl ; xx<\x\^ a , 
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2144 Kuzela, Rousar, Cezner: 

central band source: 

f(xQ\ = / f o 0 ^ \*\ < xi UJ) 

central linear source: 

f(x, 0) = <* 0 0 ( / 2> 
0 < |jc| ^ a . 

We shall derive a solution for the system with a real wall behaviour assuming an evenly wetted 
bed with a given initial value of the wall flow 

f(x, 0) = / 0 , tV(0) = W0 . (13a, b) 

In the limiting cases, WQ — 0 or / 0 — 0, we obtain solutions for the case of an evenly wetted 
bed Or for the case of a wall source. 

It follows from the boundary conditions (8)—(13) that the studied system will be in all cases 
symmetrical with respect to the yz plane. With regard to the assumption of continuity of the 
distribution function for z > 0 (ref.8), we can write the second boundary condition (denoted 
in further text as symmetry condition of the system) in the form 

/ x = 0 

The total liquid flow through the system of unit length is given by the general balance equation 

< 2 = 2 f(x,z) dx+ W(z). (15) 

SOLUTION FOR THE CASES OF D R Y W A L L AND TOTALLY REFLECTING W A L L 

We shall use the Fourier method. If we assume that the particular solution has the form 

fa(x, z) = X(x) Z(z) , (16 

we obtain the result 
oo 

f(x, z) - X An COS (<7n*/a) e x P ( — 11 T ° ) • O7) 
n= 1 

Here To denotes a dimensionless criterion11 corresponding to the Fourier number from the theory 
of heat conduction, 

To = Dz/a2 , (18) 
and the constants 

qn = (2n - 1) K/2 , n= 1,2,... (19a) 
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Liquid Distribution in Wetted Slit Reactors 2145 

denote the zero points of the cosinus function in accord with the boundary condition (3). Analog-
ously if follows from (4) that for the case of a totally reflecting wall the constants 

qn= rm , n= 0 , 1 , 2 , . . . (19b) 

are the zero points of the sinus function, and the distribution function has the form 

CO 

f(x, z) — A0 -f ^ c o s (nK*la) e x P (—n2n2 To) . (20) 
n= 1 

The constants An can be determined from the corresponding boundary condition, which is 
expanded in series according to Eq. (17) or (20) for z—> 0, i.e., To—> 0. The result is 

f(x, 0) cos (qnx/a) d(xja) , n > 0 , (21a) 

f(x, 0) d (xja) = Qj2a , (21b) 

where the constants qn are given by either of Eqs (19a,b). 

From the above general solution we can easily derive equations for the particular 
modes of the boundary wetting of the bed and for the given wall behaviour. 

Dry Wall; qn = (2n - 1) rr/2 

For a generally wetted bed we obtain by combining Eqs (17) and (21a) and expressing 
f ( x , 0) from the boundary condition (8) 

oo fx 2/<* 
f ( x , z) = 2 X cos (qnxja) exp ( - q2

n T o ) g(x') cos ( q n x ' / a ) d ( x ' / a ) , (22) 
n=1 Jxi/a 

since beyond the limits of this integral the function f ( x , 0) is equal to zero. If we set 
in Eq. (22) g(x) equal to a cons tan t / 0 , we obtain after integration and rearrangement 

f ( x , z) „ ~ sin (qnx2la) — sin (qnxja) , , x , 7 ^ . , 
- — r 1 = 2 I r v ^ c o s e x p T o ) ' ( 2 i ) 
Qj2a n=x qn(x2la - x^a) 

for the case of two symmetrical band sources defined by the boundary condition (9). 
Here we used the relation 

Q — 2(X2 - X , ) / 0 . (24) 

The term Qj2a in Eq. (23) is equal to the average wetting density; the left-hand side 
of (23) is called the relative wetting density. 
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2146 Kuzela, Rousar, Cezner: 

If we perform the limit x2 x1 in Eq. (22) we obtain an equation for the case 
of two symmetrical linear sources. The relative wetting density is given as 

f(x z) 00 

^ T T ^ = 2 X cos (q^Ja) cos (qnx/a) exp { - q \ T o ) . (25) 
Q\2a «= i 

By setting x2 = 0, Eq. (23) takes the form corresponding to a band source (character-
ized by the boundary condition (11)): 

z) _ 2 £ c o s M a ) e x p ( _ To) . (26) 
Q\2a n = i q^i/a 

An equation for the case of a linear source, characterized by the boundary condi-
tion (12), can be derived from Eq. (26) by performing the limit x1 -*• 0, or from (25) 
by setting x t = 0. Thus, we obtain for the relative wetting density 

• f c ) = 2 £ cos (qnxja) exp (~q2
n T o ) . (27) 

Q/2a «= i 

The relative wetting densities for the envisaged source types and given values of the 
criterion To are shown graphically in Figs 2a —d. 

Totally Reflecting Wall; qn = nn 

In the case of a totally reflecting wall, we start from Eqs (19) and (20), where we intro-
duce the constants Aa from (21 a,b). Since the derivation is analogous to the case of 
a dry wall, we present only the results. 

Generally wetted bed, boundary conditions (8): 

OO 

f(x, z) = Qj2a + 2 cos (nnxja) exp ( — n2K2 T o ) . 
n= 1 

g(x') cos (mix'I a) d(x'ja) . (28) 
J xi/a 

Two symmetrical band sources, boundary conditions (9): 

f(x, z) _ i + 2 sin (w7rx2/a) — sin (nnxja) 
Qj2a n= 1 nK(x2ja — x^a) 

. cos (nnx/a) exp ( — n2n2 T o ) . (29) 
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Liquid Distribution in Wetted Slit Reactors 2147 

Two symmetrical linear sources, boundary conditions (iO): 

fix z) 00 

= 1 + 2 £ cos ( n n x ^ a ) cos (nrcx/a) exp ( — n2n2 T o ) . (30) 
Q/2a n = I 

b 

Fig. 2 
Dependence of / r e l = f{x, z)j{Qj2a) on x/a for 

a: Central Linear Source 
/rel = 0 0 f o r xla = 0; 1 To = 0 001; 

2 To = 0 01; 3 To = 0 1 
b: Central Band Source 

/rei = 5 for \xja\ < 0-2; 1 To = 0-001; 
2 To — 0 01; 3 To = 01. 

d 

the Slit System with a Perfectly Dry Wall 

c: Two Symmetrical Linear Sources 
/ r e , = oo for \xja\ = 0-2; 1 To = 0 001; 

2 To = 0-01; 3 To = 01 . 
d: Two Symmetrical Band Sources 

/ r e I = 5 for 0-2 < \xla\ < 0-4; 1 To = 
= 0 001; 2 To = 0-01; 3 To = 01 . 
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2148 Kuzela, Rousar, Cezner : 

Band source, boundary conditions (11): 

f i x , z ) „ „ ^ s m ( n n x j a ) , , , , , , ^ N . . 
J K ' = 1 + 2 J ] ^ ^ c o s (mix I a) e x p ( ~ n 2 n 2 T o ) . (31) 

Qj2a n = i n j r x j / a 

Linear source, boundary conditions (12): 

= 1 + 2 £ cos (mix I a) exp ( - n V To) . (52) 
Q\2a n=\ 

The relative wetting densities for these source types and given To values differ from 
the preceding case only for large To values as can be seen by comparing Figs 3 and 2a. 

Real Wall 

We shall solve the partial differential equation (2) for a real wall boundary condition 
by the method of Laplace transformation. Eq. (2) after transformation and using the 
boundary condition (13a) gives 

D 8 ^ ^ = P F ( x , p ) - f 0 , (33) 
oxz 

where F(x, p) denotes the Laplace transform of f(x, z). This equation has the general 
solution 

F ( x , p) = f o / p + Al cosh [ ( p j D Y ' 2 x] + A2 sinh [ ( p / D ) 1 ' 2 x] . (34) 

With respect to the symmetry condition (14) we have 

A2 = 0 , F ( x , p) = f 0 \ p + Ax cosh [ ( p j D ) 1 ' 2 x] . (35), (36) 

By combining the equation for the wall flow (7) with the boundary condition of the 
real wall (5) and transforming we obtain 

whence it follows with the aid of Eq. (36) 

A = _ 1 f o - y**o 
1 p ( D / f i + 2 D y j p ) ( p \ D ) 1 ' 2 sinh [(p/D)1/2fl] + cosh [ ( p / D ) 1 ' 2 a] ' 

(38) 
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Liquid Distribution in Wetted Slit Reactors 2149 

Now we can introduce this result into Eq. (36), define an auxiliary parameter 

q = (fl/i) (W*>)"2 (39) 

and use the known relations 

sinh (ix) = i sin x , cosh (ix) = cos x (40a,b) 

to obtain 

F(x> _ fo ( f o ~ cwol2a)cos 

p p[_(Cjq — qjB) sin q + cos g ] 

where the dimensionless criteria B and C are defined as 

C = lay , B = pajD . (42), (43) 

The equation for the wetting density is obtained by retransformation of Eq. (41). 
It is obvious that the original of the term f0jp is the boundary wetting density / 0 . 
The original of the second term on the right can be found with the aid of the Heaviside 
theoreme: If the Laplace transform of the function h(z) has the form H1(p)lpH2(p), 
then 

h ( z ) = =
I 1 M + y ffifrQexp (anz) (44) 

H2(0) an[dH2(p)ldp],mJ K J 

F I G . 3 

Dependence of / r e ] = f(x, z)/(Q/2a) on xja 
for the Slit System with a Totally Reflecting 
Wall and a Central Linear Source 

/ r e l = oo for xja = 0 ; 1 To = 0001; 2 
To = 0 01; 3 To = 01; 4 To = 0-5. 

Fig. 4 
Dependence of / r e I = f(x, z)j{Qjla) on xja 
for the Slit System with a Real Wall and an 
Equally Wetted Bed 

C = 1; B = 1; I To - 0 01; 2 To = 01; 
3 To = 0 5; 4 To = 7 0. 
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2150 Kuzela, Rousar, Cezner: 

where an denotes simple poles of the ratio Hl(p)\H2(p). Hence, by retransformation 
of Eq. (41) we obtain 

/(*, z) = / 0 - / o ~ C W f a - ( f 0 - CW0j2a) . 
C T 1 

y cos (g„x/a) exp ( - g 2 To) , 
'„= i sin qn(Cl2qn - 3qj2B - q\2) + cos qn( 1 + C/2 - q2j2B) ' 

where qn is the value of g for p = an and is defined by the equation 

(C/qn - qjB) sin qn + cos qn = 0 . (46) 

The roots qn of Eq. (46) for chosen values of the criteria B and C are given in Table I. 
For n > 10 we have approximately qn + l = qn + %. If sin qn is expressed from Eq. 
(46) and introduced into (45) we obtain after rearrangement the resulting equation 

f(x, r ) = - C - ( / o + W0j2a) + 2 ( / 0 - CW0j2a) . 
v T I 

y (<?nlB - C ) COS (gn*AQ eXP ( - g n T ° ) (47) 
[ W / 5 - c ) 2 + q2jB + q2

n + c] cos ' 

For the special case of an equally wetted bed (W0 = 0 ) we have 

z)lf0 = C/(C + 1) + 
QI2a 

+ 2 f {<1*1B ~ C) cos (g„x/a) exp ( - g 2 To) 
~ n = i [ ( 9 ; /B - C)2 + q2jB + ql + C] cos q j 

and for the case of a wall source ( f 0 = 0) 

/ f c z ) = f ( x 1 z ) = 

Qj2a W0l2a 

_ 2C y (qljB - C) cos (qnxla) exp (-q2 To) 
ni1 [(42/B - C)2 + qljB + ql + C] cos qn ' 

(49) 

The relative wetting densities for the case of an equal wetting or for the case of a wall 
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Liquid Distribution in Wetted Slit Reactors 2151 

source are shown graphically in Figs 4 and 5. The meaning of the individual criteria 
is obvious from the discussion in ref.12. 

By performing the limit z -» oo in Eqs (47) — (49) we obtain 

= C/(C + 1) . (50) 
Ql2a 

Hence, with respect to the balance of the liquid flow through the system, Eq. (15), 
we have necessarily 

W(co)lQ = 1 l(C + 1) . (51) 

These limiting formulas give a clear meaning to the dimensionless criterion C defined 
by Eq. (42). With increasing value of C the wall flow diminishes; it is obvious that 
for C -> oo the wall becomes totally reflecting. 

The criterion B defined by Eq. (43) characterizes the flow of the liquid to the wall; 
together with the criterion To, which characterizes the horizontal spreading of the 
liquid through the bed, it determines the distance from the origin where the stationary 
state is reached. 

Based on Eqs (42) and (43), the boundary condition (5) can be written in the form 
of the criterion equation 

_ 2a / d f ( x , z ) \ = B / f ( a ^ z ) _ Q W(z)\ _ 

Q V d(xla) )x/a= i \Ql2a Q J 

Measurement of Constants of Distribution Equations 

In the preceding communication1 of this series, the correlation of the criterion To and of the 
horizontal spreading coefficient D for a cylindrical system was described. Since the value of D 
is independent of the system geometry, its value measured on the cylindrical system applies also 
for the slit one. If we compare the meaning of variables in the definition of To for a slit system (22) 
with the variables occurring in the definition of To for a cylindrical system11 , it follows that the 
To value for a height coordinate z in a cylindrical system of a diameter 2a is equal to that for the 
same height coordinate 2 in a slit system of a width 2a. 

The coefficient D or criterion To for a slit system can be measured by the method described 
in the preceding communication1 for a cylindrical system. 

Previous authors 9 ' 1 0 who studied the cylindrical system used for the correlation relations 
for a semiinfinite system of for one with a dry wall. A semiinfinite system is represented by a bed 
of a finite height h (vertical dimension) and infinite horizontal dimensions. It is characterized 
by the boundary condition 

lim f(x, z)= 0 . (53) 
X~* 00 

Col lec t ion Czechos lov . Chem. C o m m u n . [Vol. 40] [1975] 



2152 Kuzela, Rousar, Cezner : 

Tour and Lerman 4 derived from experimental data a relation for the case of a central linear source 
defined by the boundary condition {12). By a suitable choice of a constant, this relation can be 
rewritten in the form 

The symbol a in this equation has f rom the point of view of the envisaged semiinfinite system 
no physical meaning. However, it is evident f rom the definition of the criterion To (Eq. (22)) 
that it represents (as in the preceding cases) the half-width of the bed of the real slit system in which 
the measurement is carried out. The application of the relationships for the hypothetical semi-
infinite system to a real one is possible with the assumption that the width of the real system is 
sufficiently large to eliminate the influence of the wall on the liquid distribution. 

The relative wetting densities for the case of a semiinfinite bed with a central linear source 
are shown schematically in Fig. 6. 

Equations for more complicated modes of the boundary wetting can be derived in a simple 
way: We shall, e.g., consider a general source defined by the boundary condition (8) as a set 
of linear sources acting in a point on the width element d„r'. We then obtain the wetting density 

f(x, z) = [Qj2(nDz)1/2] exp (-x2j4Dz), (54) 

which is the so-called fundamental solution of Eq. (2), or after rearrangement 

0-5 

/ re I 

0 0-2 04 0-6 0-8 x / a 10 0 2 3 x/a 4 

F I G . 5 F I G . 6 

Dependence of / r e , = f(x, z)/(Q/2a) on xja 
for a Semiinfinite Bed with a Linear Source 

Dependence of fTC, = fix, z)j(Qj2a) on xja 
for the Slit System with a Real Wall and 
Liquid Led to the Wall / r e l = oo for x/a = 0; 1 To = 0 001; 

2 To = 0 01; 3 To = 0 1 . 

rel — 

C = 1; B = 1; 1 To = 0 01; 2 To = 0 1 ; 
3 To = 0-5; 4 To = 7 0. 
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Liquid Distribution in Wetted Slit Reactors 2153 

f(x, z) in a given point as the sum of the wetting densities due to the individual linear sources 
of the set: 

f(x,z) = | [g(x')l2(nDz)1,2]exp(-x'2l4Dz)dx' -

fX+X2 
[g(x')[2(nDz)1^2] exp (— x'2/4Dz) dx' . ' (56) 

X + xi 

Numerous solutions for the case of a semiinfinite bed are given for analogous processes (dif-
fusion, heat conduction) in the l i terature 1 3 ' 1 4 . 

Stanek and Kolar 1 5 recommend to use for the determination of the horizontal spreading 
coefficient D equations for a dry wall system. According to them, it is not justifiable to apply 
equations for a semiinfinite system since in this model of the distribution always a certain frac-
tion of the liquid is for z > 0 "beyond the system". (This fraction can be for a unit length of the 
slit system expressed as 

f — a [*oo 
A Q ( z ) = fix, z) dx + f(x, z) dx , (57) 

J — oo J a 

where f(x, z) is the distribution function for a semiinfinite bed.) However, this point of view 
is disputable with respect to the limited accuracy of the determination of the mentioned con-
stants and to the possibility of neglecting the "flow beyond the system" for relatively small z 
values (as can be seen from the comparison of the relative wetting densities for a slit system with 
a dry wall and a semiinfinite system, both wetted by a linear source). 

The measurement of the criterion C is based on Eq. (50) or (57), which gives the ratio of the 
liquid flowing through the bed or along the wall for z —> oo or To—> oo (Figs 4 and 5). 

The criterion B can be determined as in the preceding cases by the methods used for cylindrical 
systems. In the method of Stanek and Kolar 1 6 , use can be made of an apparatus for the determina-
tion of the coefficient D; the flow of the liquid through segments under the bed wetted by an even 
source or by a wall source is compared with the flows calculated from Eqs (48) and (49) into which 
we insert the measured values of To and C and chosen values values of B. 

In the method of Dutkai and Ruckenstein1 0 , use is made of the boundary condition (5). As 
already mentioned, this equation multiplied by 2 dz represents the balance of the liquid transfer 
to the wall; hence 

2 dzp[f(a, z) - 7 W(z)\ = d fV(z) . (55) 

If the bed is wetted by a wall source, then 

lim f(ci, z) = 0 . (59) 
z-0 

By inserting this relation into (58) and rearranging we obtain with the use of (18), (42) and (43) 

In [ fV(0)l W(z)] = In [Ql W(z)\ = BC To . (60) 
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To determine the criterion B (or coefficient /?), we therefore measure the wall flow for a sufficiently 
small bed height and using the criteria C and To (or coefficient y and coordinate z) we calculate 
the desired quantity from Eq. (60). 

LIST OF SYMBOLS 

a half width of the slit system (parallel to the axis) (L) 
An constant 
B criterion characterizing the liquid transfer to the wall 
Bn constant 
C criterion characterizing the stationary state 
D coefficient of horizontal spreading of the liquid in the bed (L) 
f(x, t) or f(x, y, z) wetting density (distribution function) (L/T) 
/ 0 initial wetting density 
fn(x, z) particular solutions for f(x, z) (L/T) 
F(x, p) Laplace transform of f(x, z) 
/ r e , relative wetting density 
ff(x) function of initial wetting density fulfilling the Dirichlet conditions (L/T) 
h bed height (L) 
i imaginary unit 
L length of the slit system (parallel to the y axis) (L) 
n whole number 
p complex variable in the Laplace transformation 
q, qn constant 
Q total liquid flow through the system of unit length (including wall flow) (L2 /T) 
To criterion characterizing spreading of liquid in the bed 
fV(z) wall flow in the system of unit length (parallel to the y axis) (L2 /T) 
W0 initial wall flow in the system of unit length (L2 /T) 
x,x' rectangular coordinates (L) 
x1, x2 source widths in the slit system (L) 
X(x) function of coordinate x 
y, z rectangular coordinates (L) 
Z(z) function of coordinate z 
/? coefficient of liquid transfer to the wall 
y distribution coefficient ( L - 1 ) 
AQ(z) flow of liquid beyond the system (Eq. (57)) (L2 /T) 
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